Partial Molar Volumes of Sodium Perfluoroalkanoates and Lithium Perfluoro-1-alkanesulfonates in Aqueous Solutions

Kunio Тамакі,* Sumiko Watanabe, and Yuichi Daikyoji Department of Chemistry, Yokohama City University, Kanazawa-ku, Yokohama 236 (Received July 21, 1990)

Synopsis. The densities of aqueous solutions of sodium perfluoroalkanoates, $F(CF_2)_nCOONa$ (n=1-4, 6, 7) and lithium perfluoro-1-alkanesulfonates, $F(CF_2)_nSO_3Li$ (n=1, 4, 8) were measured at 25 °C, and the limiting partial molar volumes were calculated. The assignment of group partial molar volumes is discussed.

It is well-known that the limiting partial molar volumes of organic solutes can be approximately represented by the additivity of group partial molar volumes.¹⁾ The volumetric properties of perfluoroal-kane compounds have received less attention. In our previous paper,²⁾ the solution properties such as heats of solution, viscosity *B* coefficients, and surface tensions of homologous sodium perfluoroalkanoates were reported. This paper describes the experimental results of the limiting partial molar volumes for homologous sodium perfluoroalkanoates and some lithium perfluoro-1-alkanesulfonates. Also, assignments of the group partial molar volumes of CF₂ and CF₃ are given.

Experimental

The homologs of sodium perfluoroalkanoates were the same samples as those described in a previous paper.2) CF₃SO₃Li and C₈F₁₇SO₃Li were prepared by neutralizing the corresponding acids with a solution of lithium hydroxide. CF₃SO₃H was from Tokyo Kasei Kogyo Ltd., and C₈F₁₇SO₃H was prepared from the potassium salt (Dainihon Ink and Chemicals, Inc.) by distillation from concentrated sulfuric acid.3) C₄F₉SO₃Li was prepared by a reaction between perfluoro-1-butanesulfonyl fluoride (Aldrich) with a concentrated solution of lithium hydroxide.3) The obtained salts were purified several times by recrystallization from benzene-ethyl acetate solutions. All of the salts were dried in vacuo at 100 °C for several days, and the molecular weights were checked by means of volumetric analysis. A known amount of a sample was dissolved in water and passed through an ion-exchange resin in the hydrogen form; the eluent was titrated with a standard NaOH solution. It was found that the purities were 99.8% for CF₃SO₃Li, 96% for C₄F₉SO₃Li, and 99% for C₈F₁₇SO₃Li. The water was triply distilled. The solutions were made by weight.

The densities were measured at 25 °C to ±3×10⁻⁶ g cm⁻³ using a vibrating-tube densimeter, twin-type SS-D-200, of the Shibayama Scientific Co., Ltd. Details of the procedure were described in a previous paper.⁴

Results and Discussion

Apparent Molar Volumes. The apparent molar volumes, ϕ_v , in cm³ mol⁻¹ were calculated from the densities using the following equation:

$$\phi_{v} = \frac{1000(\rho_{0} - \rho)}{m\rho\rho_{0}} + \frac{M}{\rho},\tag{1}$$

where m is the molal concentration; M, the molar mass in g mol⁻¹; and ρ_0 and ρ , the densities in g cm⁻³ of water and of a solution respectively. The apparent molar volume of the electrolytes is given by the equation:⁵⁾

$$\phi_{v} = \phi_{v}^{0} + A_{v}c^{1/2} + B_{v}c, \qquad (2)$$

where c is the molar concentration in mol dm⁻³: ϕ_v^0 is the limiting value, which is identical to the limiting partial molar volume, V^0 ; A_v , and B_v are constants. The value of the constant A_v is 1.868 cm³ dm³/² mol^{-3/²} for water at 25 °C.⁵⁾ The values of V^0 were obtained from the relation ϕ_v –1.868 $c^{1/2}$ versus c. Measurements were carried out in a concentration range below the critical micelle concentrations. The critical micelle concentrations at 25 °C for C₄F₉COONa, C₆F₁₃COONa, and C₇F₁₅COONa are 0.55, 0.080, and 0.030 mol dm⁻³ respectively.²) The critical micelle concentrations at 25 °C for C₄F₉SO₃Li and C₈F₁₇SO₃Li were determined to 0.10 and 0.0065 mol dm⁻³, respectively, by measurements of surface tension. The obtained values of V^0 and B_v are summarized in Table 1.

Assignment of Group Partial Molar Volumes. From the additivity rule, the V^0 values for $F(CF_2)_nCOONa$ and $F(CF_2)_nSO_3Li$ can respectively be experessed by the following equations:

$$V^{0} = V^{0}(CF_{3}) + (n-1) V^{0}(CF_{2}) + V^{0}(COO^{-}) + V^{0}(Na^{+}),$$
 (3)

$$V^{0} = V^{0}(CF_{3}) + (n-1) V^{0}(CF_{2}) + V^{0}(SO_{3}^{-}) + V^{0}(Li^{+}).$$
 (4)

The values of $V^0(\text{Na}^+)$ and $V^0(\text{Li}^+)$ become -6.6 and -6.3 cm³ mol⁻¹, respectively, if we use -5.4 cm³ mol⁻¹ as the $V^0(\text{H}^+)$ value at 25 °C, recommended by Millero.⁶⁾

As indicated in Table 1, the V^0 values increase as the perfluoroalkyl-chain length increases. The V^0 values for $F(CF_2)_nCOONa$ listed in Table 1 are fitted by a least-square method to the following equation:

Table 1. Limiting Partial Molar Volumes at 25 °c

n	$V^0/\mathrm{cm}^3\mathrm{mol}^{-1}$	$B_{\rm v}/{ m cm^3dm^3mol^{-2}}$
	F(CF ₂)) _n COONa
1	57.2	-0.87
2	81.8	-0.75
3	104.9	-0.92
4	128.5	-1.82
6	175.9	-0.84
7	199.3	_
	$F(CF_2)$	_n SO ₃ Li
1	74.7	-2.9
4	146.5	-2.6
8	238	

$$V^0$$
/cm³ mol⁻¹ = 34 + 23.63 n . (5)

We can therefore estimate that the $V^0(CF_2)$ value is $23.6 \text{ cm}^3 \text{ mol}^{-1}$.

The values of $V^0(\text{COO}^-)$ and $V^0(\text{SO}_3^-)$ were calculated using the V^0 values for hydrocarbon compounds from the literature. For this purpose, it is necessary to assign the values of $V^0(\text{CH}_3)$ and $V^0(\text{CH}_2)$. The $V^0(\text{CH}_3)$ value is given by the difference;

$$V^{0}(CH_{3}) = V^{0}[H(CH_{2})_{n}X] - V^{0}[(CH_{2})_{2n-2}X_{2}/2],$$
 (6)

where X is the terminal group such as COONa or OH. Sakurai⁷⁾ reported the V^0 values of the homologs of $H(CH_2)_nCOONa$ and $(CH_2)_n(COONa)_2$. The mean value of $V^0(CH_3)$ calculated from the data at 25 °C reported by Sakurai⁷⁾ is 26.2 cm³ mol⁻¹. Nakajima et al.⁸⁾ reported that $V^0(CH_3)=26.4$ cm³ mol⁻¹ on the basis of their V^0 values for the homologs of $H(CH_2)_nOH$ and $(CH_2)_n(OH)_2$. Therefore, we can estimate the $V^0(CH_3)$ value as being 26.3 cm³ mol⁻¹.

The $V^0(CH_2)$ value can be calculated from the V^0 values for homologous organic compounds. For example, the V^0 values reported by Sakurai⁷⁾ are fitted to the following equations:

$$V^0$$
/cm³ mol⁻¹ = 22.73 + 15.54 n , (7)

for $H(CH_2)_nCOONa$ (n=2-6), and

$$V^0$$
/cm³ mol⁻¹ = 22.95 + 15.76 n , (8)

for $(CH_2)_n(COONa)_2$ (n=3, 4, 6, 8). Therefore, the mean value of $V^0(CH_2)$ is estimated to be 15.7 cm³ mol⁻¹.

The $V^0(COO^-)$ value, calculated from the data of V^0 for $H(CH_2)_nCOONa$ reported by Sakurai⁷⁾ using the values of $V^0(CH_3)$, $V^0(CH_2)$, and $V^0(Na^+)$, becomes

Table 2. Group Partial Molar Volumes at 25 °C

Group	$V^0/\mathrm{cm}^3\mathrm{mol}^{-1}$	
CF_2	23.6	
CF_3	46.1	
CH_2	15.7	
CH_3	26.2	
COO-	18.3	
SO_3^-	34.0	
Na ⁺	-6.6	
Li^+	-6.3	

18.3 cm³ mol⁻¹.

We can now estimate the $V^0(CF_3)$ value from Eq. 3, using the values of $V^0(CF_2)$, $V^0(COO^-)$, and $V^0(Na^+)$. The mean value of $V^0(CF_3)$ becomes 46.1 cm³ mol⁻¹.

The $V^0(SO_3^-)$ value can be calculated from the data of V^0 for the homologs of $H(CH_2)_nSO_3Na$ (n=1-6) reported in a previous paper⁴) using the values of $V_0(CH_3)$, $V^0(CH_2)$, and $V^0(Na^+)$. For these homologous salts, the V^0 values are fitted to

$$V^{0}/\text{cm}^{3} \text{ mol}^{-1} = 37.84 + 15.83 \ n.$$
 (9)

Therefore, the $V^0(CH_2)$ value is 15.8 cm³ mol⁻¹ for these homologous salts. Then, the mean value of $V^0(SO_3^-)$ becomes 34.0 cm³ mol⁻¹. All of the values of group partial molar volumes estimated above are summarized in Table 2.

The V^0 Values of $F(CF_2)_nSO_3Li$. The V^0 values for $F(CF_2)_nSO_3Li$ can be estimated from Eq. 4, using the group partial molar volumes listed in Table 2. The calculated values of V^0 for CF_3SO_3Li , $C_4F_9SO_3Li$, $C_8F_{17}SO_3Li$ are 73.8, 144.6, and 239 cm³ mol⁻¹, respectively. The values of CF_3SO_3Li and $C_8F_{17}SO_3Li$ are in fairly good agreement with the experimental values of 74.7 and 238 cm³ mol⁻¹, respectively, as is listed in Table 1. With $C_4F_9SO_3Li$, the experimental value is somewhat larger than the calculated value. This discrepancy is probably due to the sample, since $C_4F_9SO_3Li$ is difficult to purify.

The authors wish to thank Dainihon Ink and Chemicals, Inc., for the generous donation of potassium perfluoro-1-octanesulfonate.

References

- 1) R. Zana, J. Polym. Sci., Polym. Phys. Ed., 18, 121 (1980).
- 2) K. Tamaki, Y. Ohara, and S. Watanabe, *Bull. Chem. Soc. Jpn.*, **62**, 2497 (1989).
- 3) T. Gramstad and R. N. Haszeldine, J. Chem. Soc., 1956, 173, 2640.
- 4) K. Tamaki, Y. Ohara, M. Inabe, T. Mori, and F. Numata, Bull. Chem. Soc. Jpn., 56, 1930 (1983).
- 5) O. Redlich and D. M. Mayer, Chem. Rev., **64**, 221 (1964).
 - 6) F. J. Millero, Chem. Rev., 71, 147 (1971).
 - 7) M. Sakurai, Bull. Chem. Soc. Jpn., 46, 1596 (1973).
- 8) T. Nakajima, T. Komatsu, and T. Nakagawa, Bull. Chem. Soc. Jpn., 48, 783 (1975).